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Preface

Due to size and weight restrictions on launching

telescopes into space, the concept of multiple mirror

telescopes must be vigorously pursued. This thesis involves

taking several multiple mirror configurations and, by using

information gathered at several wavelengths, increasing the

resolving capability of each particular system without

adding more or larger mirrors to the system. The only

weight addition would be the additional sensors needed to

detect the light at multiple wavelengths. There were seven

configurations studied; some allowed for a marked increase

in resolution, others did not. This thesis presents the

optimum solution found for six of the mirror configuration

studied.

I would like to thank Capt Jim Targove for his constant

and patient guidance as the advisor throughout this effort.

I also thank MaJ Bruce Morlan for his contributions to the

Operations Research optimization portion of this effort;

his help in starting the optimization computer code was

invaluable. Last, but certainly not least, I thank my wife,

Danusia, for her endless patience and understanding

throughout the trials and tribulations of the past eighteen

months.
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Abstract

The theoretical resolution of a multiple mirror

telescope can be studied through its 14cGltion Transfer

Function (MTF). Using the figure of merit that the mirrors

be moved apart in a manner that would maximize the spatial

frequency at which the first zero appears in the MTF, this

thesis studied the use of MTF information from multiple

wavelengths to delay the appearance of an interior zero in

the overall MTF. This would allow the mirrors to be moved

further apart and thereby increase the frequency at which

the first zero appears in the MTF, increasing the resolving

capability of the system. Symmetrical configurations from

three to six mirrors were studied. Each configuration was

initially manually optimized at three microns, then the

system was studied at a three to five micron range to see if

the MTF information from other wavelengths would delay the

appearance of an interior zero in the overall system MTF,

thus allowing an increase in the distance between mirrors.

An optimization routine was also employed to see if there

were other, nonsymmetrical, mirror configurations that could

possibly yield a better theoretical resolution than their

symmetrical counterparts. i

The various findings throughout the research were

detailed. The results were presented as a function of

increase in theoretical resolution from the single, three

viii



micron wavelength compared to the multiple, three-to five

micron wavelength MTF of the system studied. The

optimization routine, in general, yielded a small but

significant increase in resolution when compared to a

symmetrical system with the same number of mirrors.
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BROADBAND INCOHERENT IMAGING

USING MULTIPLE APERTURE OPTICS

I. Background

Introduction

A telescope's resolving ability can be improved upon in

two ways: the first is increasing the diameter of the

aperture, and the second is using a phased array optical

system. The ability to resolve objects, that is, visually

distinguish what an object is, is directly related to the

diameter of the optics used in the observation. The greater

the diameter of the optics, the better the resolution.

The Hubble telescope (to be launched into space in the

near future), has already reached the size limit of any

single aperture telescope that can be put into space

(11:762). Increasing the diameter of the telescope aperture

is not presently feasible because there is no launch

platform capable of putting a telescope with a larger

diameter into orbit (11:763). Therefore, this thesis

considered a more promising second option, a phased array

optical system. In this system, the effective diameter of
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the telescope can be greatly increased by using several

smaller mirrors in a phased array, rather than increasing

the size of the single mirror. Another favorable feature of

this type of array is reduced cost when compared to a single

mirror system with an equivalent diameter (11:763).

Problem Statement

The purpose of this thesis was to investigate the

concept of utilizing information gathered at multiple

wavelengths in order to improve the theoretical resolving

capability of a multiple mirror system. Specifically, it

studied seven mirror configurations, varying the geometry

and/or the number of mirrors in each. In each multiple

mirror system studied, the goal was to use information

gathered at multiple wavelengths which could then allow an

increase in the distance between mirrors, thereby improving

the resolving capability of that system.

Literature Review

The follo"ing sections review literature pertinent to

tLis research proposal. Specifically, this discussion

covers: the history of optical telescopes, multiple mirror

telescopes, spatial resolving power of single versai

multiple mirror optics, criteria for determining the

effective diameter of single versus multiple mirror optics,

the specific problems associated with imaging incoherent

light through multiple mirror optical systems, and specific

geometries associated with multiple mirror optics (8).
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Single Mirror Telescopes. The first recnrdz': use of a

telescope for the observation of celestial objects was by

Galileo Galilei in the fall of 1609 (3:30). From that day

on, the drive has been to improve upon the quality of the

received image. Until recently, the primary method of

Improving resolution has been simply to increase the

diameter of the single mirror used in the telescope. The

following equation expresses the resolving capability of a

telescope:

* - 1.22× (1)

where 8 is the angular separation between two far-field

points being observed (in radians), X is the

wavelength of the incident light (in meters), and d is

the diameter of the collecting optics (in meters). At this

angle, the points are Just able to be distinguished as two

distinct points. This limit is known as the Rayleigh

diffraction limit (5:138). As one surmises from Equation

(1), a decrease in wavelength or an increase in the mirror

diameter will increase the resolving capability of thp

system. The operating wavelength range of a telescope

system is constrained by the type of information one wishes

to study (infrared, microwave, visible, etc.); however,

astronomers can easily determine the diameter of the primary

mirror when building a telescope, and, the larger the

diameter, the better its resolving capability.
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However, there are serious drawbacks to building larger

mirrors for use ii teiescopes. One is that

... (I)ncreasing the diameter of an optical
telescope by simply scaling it up will, from
historical experience, increase the cost nearly in
proportion to the cube of the ratio of the increased
diameter. (11:763)

A second major drawback is the sheer weight of the

mirror. Even Galileo realized that there is a limit to the

size of a mirror due to weight (3:30). As the weight of the

mirror increases, it begins to buckle and warp under its own

weight unless massive supports hold it rigid. The

astronomical world has nearly reached its limit on size of a

traditional monolith mirror with the 5 meter telescope on

Mt. Palomar (19:17) and the Russian attempts at a 6 meter

mirror (3:30). There is a pressing need to develop new

technologies to increase the diameter without paying the

tremendous penalties in weight and cost.

Multiple Mirror Telescopes. There is another method to

increase the diameter of an optical system -- by using two

or more mirrors spaced a distance apart, but synchronized in

such a way that the radiation they are receiving is in phase

(4:161).

The term optical phased array describes an optical
configuration which is a group of telescopes or
imaging systems, each with independent capability,
coherently combined to produce a significantly larger
aperture optical system. (6:122)
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The term "optics" refers to any aperture that collects

electromagnetic radiation, such as a radio dish, but is more

commonly used to describe the classical mirror telescopes.

With the advent of atomic clocks in the 1960s (needed for

accurate cimekeeping and phase matching), radio astronomy

has adapted the method of phasing arrays to increase the

receiver's diameter (15:52). The multiple receivers could

be as far apart as desired. Even more surprising, if radio

astronomers keep an accurate time, they can take

observations at 180 day intervals, thus effectively

increasing the diameter of the optics to the diameter of the

earth's orbit (4:162). This phased array technique for

increasing the diameter of the optics works well for radio

astronomy, but it Is very difficult to adapt to infrared and

visible wavelength astronomy because building a synthetic

aperture system critically depends on matching the phase of

the collected radiation at the receiver.

"The difficulty in synthesizing an aperture lies in

achieving and maintaining matched optical paths of several

independent optical systems" (7:3). The tolerance must be

within fractions of a wavelength (4:163). This phase

matchin4 is relatively simple for the radio telescope; the

incident radiation wavelength is measured in meters, thus

requiring tolerances in centimeters. The wavelengths used

in infrared and visible astronomy are measured In microns --

10-6 meters -- thus requiring a tolerance of about 10-9

meters. Only recently has control of this incredibly small

5



tolerance been achieved by coupling computers with lasers to

keep the optics aligned within tolerance (17:24). Physics

now has a method of increasing the resolving capability of

infra-red and visible astronomy without the need for larger

single mirror telescopes.

Credit for using the first optical synthetic aperture

device goes to Michelson and his two mirror interferometer

in the 1920s (6:122), but this was a very specialized

application of the multiple aperture device, where detecting

the angular separation of two or more stars depended on

matching the phase of two stars with two mirrors. "A more

recent, truly dramatic demonstration of infrared aperture

synthesis was accomplished on the Multiple Mirror Telescope"

(6:122), completed in 1979 (19:17). This six-mirror

Stelescope has a mirror diameter of 4.5 meters (nearly the

diameter of the Mt Palomar telescope), and was built at a

cost roughly one-third that of a conventional single mirror

telescope with similar dimensions (3:37).

There are distinct advantages to multiple mirror

telescopes.

Multiple aperture imaging configurations are
advantageous for three basic reasons. The first
reason is a very practical one -- very high
resolution achievable using reasonable optical
fabrication methods, cost and schedule.. .The second
phased array advantage is a geometrical o^e. Arrays
can be arranged into configurations that are
significantly more compact than equivalent diameter
and f-number single aperture systems.. .The third
advantage is that the array may have an intrinsically
superior optical performance if it is properly
configured. (6:126)
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Today, there are many other projects underway to take

advantage of these advances in optics. Two of these

projects are the United States efforts to build the National

New Technology Telescope (NNTT) with a diameter of 15 meters

and the European scientific community proposal to build the

Very Large Telescope (VLT) with a 16 meter diameter

(17:23,24). As the realm of multiple mirror telescopes

continues to expand, new questions arise as to whether

certain standards that apply to single mirror telescopes

apply equally well to the multiple mirror systems. But

prior to addressing thi issue, a concept of measuring a

system's re~olving capability, the Modulation Transfer

Function (MTF) is defined-

Spatial Resolution and Modulation Transfer Function

(MTF). A commonly used method of determining the

performance of an optical system is by using a target

consisting of alternating light and dark bars of equal width

(Figure 1)(20:308).

... Several sets of patterns of different spacings are
usually imaged by the system under test and the
finest set in which the line structure can be
discerned is considered to be the limit of resolution
of the system, which is expressed as a certain number
of lines per millimeter. (20:308-309)

As the lines get narrower, the alternating dark and light

bars begin to "wash out", becuming more of a grey than a

light and dark -- the system slowly loses its ability to

detect the contrast between light and dark.
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ON III

Reprinted from (20:309)

Figure 1. Imagery of a bar

target

If we express the contrast in the image as a
"modulation", given by the equation

MODULATION - max - win
max min (2)

(where max. and min. are as indicated in Fig. 2), we
can plot the modulation as a function of the number
of lines per millimeter, as indicated in Fig. (3).
The intersection of the modulation function line with
a horizontal line representing the smallest amount of
modulation which the system can detect will give the
limiting resolution of the system. (20:310)

The bar target represents the brightness distribution as

a square wave. However,
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~ IMAGE
iLLUMINATION
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Reprinted from (20:309)

Figure 2. Determining the modulation of

a test pattern

.IMITINGi .0 RESOLUTION MI MU

zo DETECTABLE

MODULATION

0

0
FREQUENCY (N)-

Reprinted from (20:310)

Figure 3. Image modulation vs

frequency of the test pattern
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... if the object pattern is in the form of a sine
wave, the distribution in the image is also described
by a sine wave, regardless of the shape of the spread
function. This fact has led to the widespread use of
the Optical Modulation Transfer function to describe
the performance of a lens system. The Modulation
Transfer Function (MTF) is the ratio of the
modulation in the image to that in the object as a
function of the frequency (cycles per unit of length)
of the sine wave pattern.

N1  (3)
MTF(v) 

(

M0

A plot of MTF against frequency is thus an almost
universally applicable measure of the performance of
an image forming system. (20:311)

The discussion to this point has been for a one-

dimensional system. To extend the concept of the MTF to two

dimensions, one need only to realize that the sine wave

pattern can be pointed in any two-dimensional direction.

* This is analogous to rotating the bar target to any

direction over 360 0. At any point, these sinusoids can be

decqmposed into their cartesian components t and In

with units of (m- ). Just as a one-dimensional waveform,

such as a square wave, can be reconstructed using an

infinite series of sinusoids (a Fourier transform), a two-

dimensional object can be reconstructed using an infinite

series of sinusoidal "vectors", the magnitude at any given

point as defined by Equation (2).

Simply put, the MTF describes the spatial frequencies

that an optical system can and cannot detect, thereby

establishing the resolution limit of the system.

10



... While the electronic transfer function describes
the ability of a circuit or electrical system to
transmit temporal frequencies, the MTF is a
description of a system's transmission of spatial
frequencies. (18:1)

For the single aperture telescope, the amount of spatial

information gathered is a function of the wavelength and

mirror diameter -- for a given system configuration, as the

wavelength gets shorter and/or the diameter increases, the

system can gather higher frequency spatial information,

thereby increasing resolution. However, the multiple

mirror's geometry as well as the spacing between mirrors

within the system also play an important role in the amount

and frequency of the spatial information gathered.

Synthetic Aperture Diameter. The standard method for

determining the diameter for multiple mirror telescopes is

using the minimum diameter circle which w.ill enclose the

entire mirror svstem. Harvey contends that this figure

should not necessarily equate to the diameter value used in

determining resolution, as in a single mirror system. He

defines the effective diameter of a synthetic aperture

optical system to be determined by ". ..the maximum spatial

frequency within which no zeros occur in the MTF" (the

calculations to determine the "equivalent diameter" are

covered in chapter 3) (11:767). This is important when

using a multiple mirror system for imaging incoherent

objects because this limit determines a system's ability to

resolve images. "Incoherent" in this context refers to any

11



object that has distinct features such as a specific

geometrical shape or form. This is in contrast to a

coherent object, such as a star, which is a point source of

light with no discernable shape. In this thesis, Harvey's

criterion for effective diameter will be used to determine

the optimum configuration of a multiple mirror optical

system at a single wavelength, and will be referred to as

the "minimum MTF". By studying the spatial information a

system can gather over a wavelength spectrum (3 to 5

microns), the thesis will attempt to increase the system's

effective diameter by filling the gaps in the MTF of one

wavelength by using spatial information gathered at

different wavelengths.

Multiple Mirror Geometry. There are countless ways in

which to arrange a multiple mirror system. Once the number

of mirrors is chosen, say four, one can arrange the system

in a box pattern, a straight line, a triangle with one

mirror in the center, and so on. The task is to determine

the best configuration for the system based on its

application.

Golay, in 1971, described the patterns he felt would

maximize the system's capability for gathering spatial

information. He presented three series of arrays, each

series including unique arrangements using from two to at

least ten mirrors (10:272-273). Bunner states, "The non-

redundant two dimensional Golay patterns provide the widest

spread of aperture that avoids zeros in the optical transfer

*12



function" (2:182). Part of this thesis will study Golay

patterns with other mirror arrangements using the same

number of mirrors to determine whether the Golay mirror

configurations will also maximize a system's diameter using

Harvey's criteria of minimum MTF.

Thesis Objectives

The overall objective of this thesis was to examine

several mirror configurations, varying both the number of

mirrors in the system and their geometries, to obtain the

maximum possible spatial frequency value prior to reaching a

zero for a given system at both a single wavelength and a

wavelength spectrum. The thesis examined systems consisting

from three to six mirrors in various geometrical configura-

tions. The following were the sub-objectives.

The first sub-objective was to develop a computer code

for generating the MTF of a given mirror configuration.

There were many variations to the main code; they will be

discussed in the methodology portion of the thesis. Several

peripheral programs were written to facilitate entering

starting conditions into the main program. The main

programs and the peripheral programs are detailed in chapter

three and listed in Appendix A and B.

The second sub-objective was to determine a measure of

effectiveness for the multiple mirror system. This measure

would be the standard measure throughout the thesis when

comparing any of the mirror systems, regardless of the

configuration of the number of mirrors. The main criterion

* 13



used to determine the spatial resolution of a given system

was the minimum MTF definition offered by Harvey, that being

to maximize the spatial frequency value at which the first

zero occurs in the system's MTF pattern (measured radially

from the origin) (11:765).

The next sub-objective was to determine the

configuration of the systems to be tested. This was done

systematically, beginning with a simple three mirror

equilateral triangle to get a feel for the way the mirror

system translated into its corresponding MTF pattern. Later

studies included increasing the number of mirrors to four,

five, and concluding with six; as the number of mirrors in

the system increased, the possible configurations of the

mirrors increased. Symmetrical patterns were chosen for

study in the belief that symmetry in the system would yield

the optimum configuration for any of the given mirror

numbers. The patterns used are shown in figure 4.

The fourth sub-objective was to manually optimize each

symmetrical mirror configuration to choose the optimum

configuration for the given number of mirrors. Each

configuration was optimized at a single wavelength of three

microns (this yielded the maximum possible MTF at the

wavelength range studied), and then the system was examined

at a spectrum of three to five microns to see if any

improvement was obtained by using the spectrum spread vs a

single wavelength.

14



The fifth sub-objective was to write an Operations

Research style optimization routine and, using the routine,

determine if there was a better mirror configuration that

would yield a greater MTF than in the manual optimization of

symmetrical configurations. The method! is the Hook and

Jeeves method, and will be described in detail in the next

chapter.

The final sub-objective was to determine if the

improvement in the MTF using multiple wavelengths was a

significant improvement.

15
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Figure 4. Mirror geometries
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II. Theory

Introduction

This chapter lays out the theoretical background

required in this thesis. The structure will be as complete

as needed; however, it is by no means comprehensive. For a

thorough background of Fourier optics, Gaskill provides an

excellent and comprehensive discourse (9).

This chapter will cover the following areas: apertures

and their various governing mathematical relationships,

concepts used to model optical systems, Fourier transforms

and how they enter into optics study, and finally, describe

a different aspect of this thesis -- optimization of an

aperture system.

Pupil Function

An aperture can take on many possible shapes (square,

round, hexagonal, etc.). Each shape has a unique

mathematical function to represent that aperture's

transmittance -- the way the light interacts when passing

through the aperture. A square aperture is represented by a

rectangle function; a circular aperture, the one this

thesis studied, is zepresented by a cylinder function. In a

single aperture, this single mathematical function

represents the system's pupil function; in a multiple

aperture system, a combination of each individual aperture's

I In this context, aperture refers to the shape of the

primary optics used in the telescope system.

0 | 17



transmittance function determines the system's pupil

function. This thesis is only concerned with circular

apertures; the mathematical function used is the cylinder

function.

The cylinder function is defined by (9:71)

2

cV, ( ) r - (4)
0. r > A

2

d = diameter of the aperture

r = radius of the aperture

As seen from the equation, the cylinder function is equal to

one as long as the radius is less than one-half the diameter

of the cylinder; by convention, if the radius equals the

diameter, the function's value is 1/2, and with the radius

greater than half the diameter, the function's value is zero

(Figure 5) (9:72). Physically, this function represents a

circular pupil -- where the function equals one represents

light passing through the pupil opening; where the function

equals zero, the light hits outside the pupil and therefore

the light does not pass through it.

i 18
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Reprinted from (9:72)

Figure 5. Cylinder function

Fourier Transforms and Optics

The Fourier transform is a powerful tool used in many

aspects of physics and mathematics. As an example, using a

Fourier series expansion, consider the rectangular wave

function. Using a Fourier series, one can very closely

approximate this function mathematically using sinusoidal

waves (9:109). The more terms used in the series, the more

closely the Fourier series will approximate the function.

The function can now be manipulated in the frequency domain

by multiplying the functinns rather than performing complex

and tedious convolution integrations; the original

function, g(t), may be obtained by performing an inverse

Fourier transform on the Fourier transformed function G(v),

and the result will be the modification of the original
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function in the time domain (9:180).

The Fourier integral decomposes the function g(t) into a

linear combination of complex exponentials. If g(t)

satisfies certain (Dirichlet) conditions, the function is

described by the equation

g(t) - J G(v) e j 2 t dv (5)

G(v) is a weighting function and is called the Fourier

transform of g(t); its value is given by the equation

a

G(v) - J a(*) e - J2w da (6)

Thz; function G(v) is also often called the complex
temporal-frequency spectrum, or simply frequency
spectrum, of g(t)... (I)t is a piecevise-continuous
function of the frequency variable v... (I)f all of
these appropriately weighted components are added
together in the proper fashion, the resulting
function is just the original g(t), which is often
referred to as the inverse Fourier transform of G(v).
(9:111-112)

G(v) describes a Fourier transform in one dimension; v

is used to describe that frequency in inverse meters (m! );

when working in two dimensions, the symbols 4 and

describe the spatial frequency components in the two

directions. As in the one-dimensional case, and

have the units of m"! , and likewise can be used to

reproduce two-dimensional shapes. An explanation of how

this thesis graphically represents these two-dimensional

spatial frequencies is in the next chapter.
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Point Spread Function. For incoherent light, the point

spread function of an optical system can be described as the

... system response to a point source of light in the
object plane some distance away. In other words, it
is the irradiance pattern that will result when this
point source is imaged. Diffraction effects within
any system will prevent the point source from being
imaged back into another point. (16:15-16)

This point source of light (an impulse) is represented by a

Dirac delta function (9:50). This function describes

... point sources, point masses, point charges, or any
other quantities that are highly localized in some
coordinate system .... (I)f the system's impulse response
is known, and if the system is a linear system we need
only to decompose the complicated input into a
superposition of a large number of delta functions, each
appropriately weighted and positioned. The net response
to the complicated input is then determined by adding
together the responses to all of the individual delta
functions. (9:50)

The output of a given system is the convolution of the

system's point spread function with the scaled object on the

image plane.

g(x,y) = f(mx,my) ** h(x,y) (7)

h(x,y) = point spread function

f(mx,my) = scaled object radiance

m = magnification

This may be regarded as "..a superposition of appropriately

weighted and shifted impulse responses" (9:336).
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* However,

... it is usually quite difficult to calculate the
output of a system by the direct evaluation of a
convolution integral, and this difficulty is greatly
magnified for two-dimensional systems. Consequently,
except in special cases, the transfer-function
approach is normally applied as a matter of
course .... (T)he output spectrum of... (this) system is
given by

%.-- Y, JHt(i,n) (6)

(9:336-337).

To obtain the actual object image, one performs an inverse

Fourier transform on the result G( t , n ).

Autocorrelation of the Cylinder Function. The cylinder

function describes the circular aperture's pupil function;

the autocorrelation of this function yields the Fourier

transform of a circular aperture's point spread function.

The rigorous derivation of the autocorrelation of the

cylinder function is found in (9:303-305); Equation (9)

yields the normalized cylinder-function cross correlation of

two equal-size cylinder functions.

I
Vcyl(r~I) - *rcos--r(-r2)2]¢cyv (9)

The variable r is a value depicting the difference between

the centers' actual separation distance and their original

separation; its value is derived in the next section. The

Fourier representation of the point spread function is the

Optical Transfer Function.
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Optical Transfer Function and Modulation Transfer

Function. To perfectly image an incoherent object, an

optical system must be able to detect spatial frequencies

from zero to infinity. This feat requires an aperture of

infinite diameter. Anything less yields less than a perfect

image of the object; as described by Equation (1), the

larger the diameter of the system, the better the image

resolution (at a given wavelength). One can now describe

the capability of the system by the maximum spatial

frequency the system can detect. This determines the

resolution limit of the system in the spatial domain. The

Fourier transform of the point spread function is known as

the Optical Transfer Function (OTF). A rigorous derivation

of the OTF is found in (9:493-497). The result is

[p 4 (X.V) ** P4 (x(v)l=)I XoA/U yoAZ(n/0
H2  area o! aperture stop

However, for a single circular aperture,

p(x,y) = cyl(r) (11)

so the numerator of Eq (10) becomes

P4 (r) ** p4 "Cr) - cvl(L) ** cvyl(-)

Rd 2 r

4 VC71 d;1

Eq (12) equals the normalized cylinder function cross-

correlation.
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In solving for the value r to be used in Eq (9), one

must transform the rectangular coordinates into polar

coordinates; mathematically, r represents the actual

distance between aperture centers plus or minus the original

distance between centers. But since we are in frequency

space, the x and y values are dummy variables; their

actual values are (9:494)

x -xf (13)

xfn (14)

where

x = rectangular coordinate of aperture

* y = rectangular coordinate of aperture

f = focal length

= spatial frequency

= spatial frequency

In a one-aperture pupil, the original distance between

centers is zero and so the value for r is (9:494)

r - (- -)2 1 (15)d d

so one obtains the value of r at the spatial frequencies

t and l . The resulting value of r is then plugged into

Eq (9). The value obtained by Eq (9) gives the magnitude of
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the OTF at the chosen spatial frequencies and 1

the value of this function is greatest at r = 0, and goes to

zero when r = 1; the purpose of the cylinder function at the

end of Eq (9) is to force the value of the function to zero

when r = d. This function is evaluated at all desired

values of and In to obtain a three-dimensional

spatial representation of the pupil's OTF (9:495).

To evaluate a pupil function with two apertures, one

performs the autocorrelation on each individual aperture,

then a cross-correlation of the pair of mirrors. Eq (12)

becomes

S 2 vcy1 d d )

+ VCY1 xfV+ a . + b)

+ 'CYI d ' d

Eq (15) becomes

r (XfFd a)2 + (Xfd- b)2 (17)

a = A x between aperture centers

b = 6 y between aperture centers

In the two mirror example, with mirror centers on the x-

axis, b = 0. To obtain the OTF of a system of three or more

mirrors, one performs an autocorrelation on the three-mirror

pupil. In deriving this transfer function and in all

subsequent calculations of transfer functions in the thesis,
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the values of d (diameter) and f (focal length) were set to

one meter.

The OTF takes into account all aspects of the system to

include system aberrations and other imperfections such as

atmospheric distortion; if one considers a perfect system

(as this thesis does), there are no phase shifts, and one

can simplify the OTF by considering only its modulus, or

Modulation Transfer Function (MTF) (9:497), as described in

chapter 1.

Determining Significance of Increase in Resolution

.,he best way to determine the significance of any

increase in resolution is to quantitatively study the

difference in the output of the mirror system between the

single wavelength optimum and its corresponding multiple

wavelength optimum. The scope of this thesis did not allow

for such a comprehensive study; however, a program was set

up to qualitatively determine whether the increase in

resolution was detectable and significant. This section

details the derivation of the equations used in the computer

routine.

The Thin Lens Law is used as a starting point.

L I (18)
0 I f

where o is the distance from the lens to the object, i

is the distance from the lens to the image, and f is the

focal length as illustrated in Figure 6.
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Reprinted from (16:13)

Figure 6. Simple thin lens imaging

Magnification is defined as (1:269)

l image distance from lens (19)linear magnification =obJectdistance from lens

or

m (20)
0

If the object distance is sufficiently large, the equation

simplifies to

f
0(21)

In this thesis, f = 1, so the equation becomes

m . 'L (22)

or, magnification is the inverse of the object distance from

the pupil. This is the scaling factor is used in Equation

(7).
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The output of a system is the inverse Fourier transform

of Equation (8). The function H( X , n ) is the MTF of the

pupil; the function F( Z , n ) is the scaled transform of

the object under observation. In this case, the object is a

sphere, but at a great distance the sphere appears as a two-

dimensional disk, its shape defined by the cylinder function

(Fig.5). The Fourier Transform of the cylinder function is

the sombrero function (9:329). Scaling the sombrero

function by the magnification and multiplying the scaled

function by the MTF yields the Fourier representation of the

object as detected by the system. When performing the

inverse transform on G( t , q ), one should obtain the

original cylinder function. But, since the object is at a

great distance from the pupil, there will be degradation of

the cylinder function, evidenced by the -ounding off and

smoothing out of the cylinder. The limit would be imaging a

coherent point source, its inverse transform being g(x,y) =

1. By comparing the relative rounding off with the sphere

at a distance near the resolving limit of the mirror system,

one can qualitatively determine if the resolution has

increased between the single wavelength system and the

multiple wavelength system.

Optimization

The field of Operations Research specializes in many

techniques and algorithms for optimization. The thesis

takes advantage of one such routine in an attempt to

optimize mirror configurations utilizing Harvey's criterion
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for determining mirror system diameter. A function, called

an objective function, is developed to describe with one

variable the value to be optimized. In this case, the

objective function is defined as the maximum spatial

frequency value at which the first zero appears in a

system's MTF. This objective function is maximized using a

modification of the Hook and Jeeves optimization algorithm

(14:511).

The original Hook and Jeeves algorithm operates as

follows (this explanation will be for a maximization problem

in a Cartesian coordinate system). A start point is chosen.

From this base point, one moves a distance plus and minus E

(epsilon) in the x direction from the point. The function

is evaluated at these points, and the best objective

function point is chosen as the temporary point. From this

temporary point, the function is evaluated plus and minus

E in the y-direction. Again the function is evaluated and

the best point chosen. If the temporary point is any point

other than the original base point, a base 2 is set up at

point 2 * c in both the x and/or y direction from the

original base point. This new base is the start of the next

exploratory search. This search continues until there is no

change in the temporary base; the latest temporary base

becomes the new permanent base. The E is cut in half,

and the search begins at the new base point. This move and

evaluate, find a new base and cut E continues until E

reaches a predetermined value. At this point, the search
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ends and theoretically, the function has reached its maximum

within the errors of the chosen minimum E (14:511-515).

The Hook and Jeeves method is a powerful method of

finding the optimum value of a function, especially if the

function does not lend itself to differentiation, a basis

for many other optimization routines (13). The method has

its disadvantages, however. The method works best on

smooth, continuous functions with no discontinuities.

Another major drawback is that it does nct differentiate

between local minima (maxima) and global minima (maxima).

This may cause the algorithm to choose the wrong optimum

point; in this case, the algorithm is sensitive to starting

point. A possible solution to this problem would be to run

the algorithm using random start points. This does not

guarantee finding the global optimim, but increases the

chances Of finding it.

The multiple aperture system is much more complex than

the simple single function optimization routine. In this

case, there are from two to six (or more) apertures that are

interrelated. The relative movement of the mirrors has a

critical effect on the objective function value; the

decision to move one mirror at a time or several at once

before evaluating the functicn will cause the final aperture

position to vary. The next chapter will describe the method

used to move the mirror system.
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III. Methodology

Introduction

This chapter will cover the practical application of the

theoretical foundation laid out in the previous chapter.

Specifically, it will describe how to interpret the three-

dimensional and contour representations of the MTF, it will

cover the formulation of the various computer codes used in

the thesis, the specific ways the code was used to generate

the data needed to accomplish the desired goals, and will

conclude with a detailed explanation of the optimization

algorithm used to optimize the results using Operations

Research methods. Wherever applicable, the explanations

will use the four mirror cross (Figure Ib) as a basis for

examples.

Graphical Representation of the MTF

As previously discussed, the MTF represents sinusoids

directed over 3600. These sinusoids are decomposed into

their C and n components.

...The tempcral frequency of a time-varying sine wave
describes the number of oscillations made by the
function per unit time; for a function that varies
sinusoidally with some spatial coordinate, the
spatial frequency associated with the function in
that same direction indicates the number of
repetitions the function makes per unit distance.
(9:129)
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The two primary methods this thesis uses to graphically

represent a pupil's MTF are the three-dimensional plot and

the contour plot (Figure 7).

Figure 7. MTF of a one mirror system
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* There is no scale depicted with either representation;

it varied depending on the number of mirrors in the system

as well as mirror spacing. However, unless otherwise

specified, the maximum spatial frequency used was 
1.5 x 10 5

m' ; this corresponds to the outer edge of the plot box in

the contour plot and the edge of the grid in the 3-

dimensional plot. In examining the three-dimensional plot

of the single mirror pupil at three microns (Figure 7a), the

peak corresponds to DC -- zero cycles per meter. At this

point, the value of r in Equation (17) equals zero.

Since the MTF is normalized, the value at this zero point is

one. The MTF plot then slopes symmetrically in all

directions down to zero, corresponding to the maximum

spatial frequency the pupil can detect. The corresponding

value of r is one. For a single mirror, one meter

diameter pupil at three microns, this equates to a maximum

spatial frequency value of 3.33 x 1 m "1 (Figure 7). The

change in spatial frequency from one side of the cone to the

other at its base is 6.66 x 105 mi. In a multiple mirror

system, since each mirror Is autocorrelated, each gathers

information as if it was an independent mirror; therefore,

the peak value of the MTF at the center of the plot (the tip

of the peak corresponding to zero) is equal to the number of

mirrors in the system (prior to normalization). Figure 8

shows the MTF of a four-mirror pupil; prior to

normalization, the central peak value is four. The point at

which the central cone reaches zero has a spatial frequency
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value of 3.33 x 105 m oi The value of the MTF

corresponding to the cross-correlated mirrors are to the

outside of the central peak; this graphically depicts the

system's ability to detect higher spatial frequencies. At

three microns, each of these outer cones has a spatial

frequency difference of 6.666 x 105 m-1 across the base.

Figure 8. Four Mirror MTF plot
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The plot changes as the detection wavelength increases.

Figures 9 and 10 show the four-mirror cross MTF at three and

five microns with the mirror spacing remaining constant.

The three micron MTF cones have the dimensions as described

above, but the five micron MTF cones now show the decrease

in the system's detection ability. The entire MTF pattern

has shifted inward, and the spatial frequency shift at the

base of each cone is now only 2.0 x 10 m -. The entire

geometry of the MTF pattern -- the spacing between the cones

as well as the spatial frequency difference along the base -

- has decreased by three-fifths. This, again, corresponds

to Equation (1) -- as the wavelength increases, the maximum

resolution proportionally decreases. This thesis takes

advantage of this inward shift at longer wavelengths to fill

in the interior gap at a single wavelength caused when

moving the mirrors outward.

The three-dimensional plot nicely shows the magnitude of

the system, but a much more useful qualitative

representation of the MTF is the contour plot. With this

plot, one can get a clear idea of what is happening as the

mirrors of a multiple mirror system move in or out (Figure

11). As each mirror system was studied at the single, three

micron wavelength, its corresponding contour plot displayed

the MTF system expanding, and, as the mirrors were moved

out, one could predict where the MTF pattern would separate,

thus determining the maximum distance allowable in the
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(a) Three micron

(b) five micron

Figure 9. Three- and five-micron 3-dimensional plots

mirror system (Figure 12). The contour plots were also

useful in predicting whether the use of multiple wavelengths

would allow for an increase in the spacing of the mirrors,

thereby increasing the maximum possible spatial frequency of

the system and Its maximum possible resolution. As vith the

three-dimensional plots, the contour plots were used only to

visualize the configuration of the MTF. "The contour lines

correspond to an evenly-spaced sequence of z values"

(21:135).
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(a) Three micron (b) Five micron

Figure 10. Three- and five-micron contour plots
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(a) 4-mirror box (b) d = 1.2 meters

00 000
000-

00 000

(c) d = 1.6 meters (d) d = 2.0 meters

Figure 11. Contour plots of four mirror pupil at

various mirror distances
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Figure 12. Contour plot shoving interior zero

Computer Routines

All of the computer programs were written in Fortran.

They were compiled and executed using Fortran 77 on an ELXSI

6400 mainframe computer. The main code used in generating

the MTF array is found in Appendix A. There were many

variations of this code modified to specific needs, such as

varying the array size to allow for clear graphics and
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expanding of one quadrant of the matrix to more exactly

determine when the mirror system was spread too much,

causing the first zero to occur close to the center (Figure

12). One code, written to evaluate the significance of the

increased resolution, requires the mathematical subroutine

library, IMSL, version 9.2. To allow for ease in loading in

initial values, a code was written to enter the initial

values into a file. The main code then took the values from

this file (see Appendix B). The optimization routine will be

covered later in the chapter.

The main computer routine performed its task in two

parts. The first portion of the program generated the MTF

array based on the initial conditions. The second part of

the program performed a search of the array to determine the

minimum MTF. This value, as well as the spatial components

at which the minimum zero occurred was then written into an

output file.

Determining Optimum Configuration

In this thesis, the bandwidth used was from three to

five microns. Any small wavelength range could be used;

with scaling, the results of this thesis can be applied to

any wavelength range. The three-to-five micron range was

chosen as a representative bandwidth because this range

represents an atmospheric "window" through which one can

survey the Earth's surface (4); current research is

expanding research and development of sensors at this

wavelength spectrum (12:57).
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Spectral information can be gathered in two ways: the

first is by using a broadband sensor to detect all the

frequencies throughout the chosen wavelength spectrum; the

second is by splitting the incoming light into several

parts, each part going to a discreet, single wavelength,

scnsor. The techniques are different, but this thesis

considered the received information past the sensors; the

computer model approximated the broadband detection by

simply decreasing the step size when going from one end of

the wavelength spectrum to the other. In practice, the

half-micron step size used in the computer runs adequately

modeled either configuration.

Once a pupil configuration was chosen, computer runs

were made at the three micron wavelength to determine the

maximum attainable MTF. The three micron wavelength was

chosen as the baseline, reasoning that, if the system was to

use only one wavelength, the one yielding the first zero

occurrence furthest from the origin would be the logical

choice. Figure 13 graphically depicts the slow increase in

the minimum zero MTF occurrence up to the point where a gap

develops in the interior of the system, causing an abrupt

drop in the minimum MTF value. In this graph, the x-axis is

the radius of a circle which would enclose the mirror

system.

Once the optimum mirror spacing was determined for the

single wavelength, the three to five micron wavelength band
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Four Mirror Cross

3 Micron
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Figure 13. MTF as radius increases

vas tested to see If the MT? from the other wavelengths

could be used to fill in the interior zero created by

increasing the spacing between the mirrors. Mathematically,

this 'Kas accomplished by computing the system's KTF at

intervals of one-half micron from three to five microns.

The results were stored In a single array. Graphically, this

showed how the various wavelengths contributed in filling in

the interior of the lITF, thus allowing the size of the

mirror system to increase, increasing Its spatial resolution
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(Figure 14). In the four mirror case, the use of the

broadband vavelength spectrum allowed for an 8.3% increase

in the MTF (from 7.44 x 105 m "! to 8.06 x 105 rn! ).

Figure 14. MTF of optimum four mirror

cross at three to five microns

wave lergth

Comparison of Mirror Systems

Using Harvey's criterion for determining the maximum

frequency before reaching a zero MTF value yielded a very

straightforward method for directly comparing any mirror

system. The thesis also uses this maximum MTF value to
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compute the single mirror equivalent. This single mirror

equivalent value is used to compare the various mirror

systems in the results.

As stated earlier, in a single mirror system, the MTF

value goes to zero at the point where the value r in

Equation (17) equals cne. Setting r = 1 and solving at a

point where n = 0 yields

dd (23)

or,

d - xfV (24)

However, with the focal length value f set to one, the

equivalent single mirror diameter Is

d - x (25)

This equivalent single-mirror diameter (in meters), solved

at a wavelength of three microns, is a very effective method

of comparing the various multiple-mirror counterparts.

Determining Resolution Increase Significance

As described !n chapter two, the sombrero function

describes the Fourier Transfcrm of the cylinder function.

Instead of generating a cylinder function and taking its

transform, a simpler method of incorporating the function is
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to generate the appropriate sombrero function, properly

scaled by the desired distance from the pupil. This was

accomplished using the following (9:72,329):

somb) = d (26)
d 41(w n r)

d

rho = spatial frequency

m = magnification (inverse distance as given in Eq 22)

d = diameter (1 meter)

J = first-order Bessel function of the first kind

The resulting array is then multiplied by the appropriate

MTF. The inverse transform of this array yields the

cylinder function, or, since the object is far away, it

yields the degraded cylinder function. Taking a cross-

section of this cylinder, one can use the slope to determine

the relative system degradation and use this slope to

compare various systems -- the steeper the slope, the better

the system resolved the object.

optimization

As stated in the previous chapter, a modified Hook and

Jeeves algorithm was used in the search for optimum mirror

configurations. The program, listed in Appendix C, has two

distinct modifications to the original algorithm.

The first modification was in the way the mirror

positions were tracked. Instead of using Cartesian

coordinates, polar coordinates vere used. This allowed for
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a unique method of linking the mirrors in the system. the

first mirror was anchored to the origin; it never moved.

The second mirror was defined as a radial distance from the

first mirror and could only move along the x axis. The

third mirror was defined at a radial distance and angle from

the second mirror, the fourth mirror was defined as a radial

distance and angle from the third mirror, and so on. This

allowed for a more robust search for an optimum value.

Whenever the second mirror moves, all the subsequent mirrors

move in the Cartesian coordinate system; however, their

relative position in the polar coordinate system remain

constant. This allows for a much easier tracking of the

entire mirror system.

The second major modification to the basic algorithm was

O not using temporary points and not moving a distance of 2*

c when an optimum point was found in a given direction.

The use of the 2 * E Jump is primarily designed for the

search of an optimum in a smooth function; moving in such a

way in this application would have opened the possibility of

moving into a region where the MTF value suddenly decreased

(the mirrors moved apart sufficiently to allow for a zero

component much nearer the origin); there would possibly be

no way to recover from such a Jump. The decision was made

to allow for a slower, more methodical search.

The search pattern proceeds as follows (using the four-

mirror system as the example). The first mirror is anchored

to the origin. From an initial set of polar coordinates,
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the second mirror moves a distance E in the plus radial

direction. The complete mirror configuration is transformed

into the Cartesian coordinate system (mirrors three and four

move along with mirror two). The resulting coordinates are

used to generate an MTF array and the array is evaluated to

determine if the minimum MTF of the system has increased.

If it has, the new mirror coordinates are kept. If not, the

second mirror moves E in the minus radial direction.

Again the system is transformed into the Cartesian system

and evaluated. Again, if the resulting spatial value

increases, the new mirror positions become the starting

point of the next phase of the search. The second mirror

does not move in the theta direction, so after this set of

moves (or attempted moves), the search moves on to the third

mirror. A move of the third mirror only affects the fourth

mirror. The third and fourth mirrors are evaluated in both

the r and theta direction. When the fourth mirror

evaluation is complete, the computer routine checks whether

any of the mirrors have moved. If yes, the mirrors are

evaluated again at the same £ , if no, the step size is

halved and the system is evaluated at the new £ . This

continues until the routine reaches a predetermined £ ;

the routine ends and, hopefully, a global optimum value is

obtained.

As stated earlier, this algorithm is not able to

determine whether the optimum attained is a local or global

optimum; several runs were performed with each mirror
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number using various Initial mirror positions as vell as

changing the initial £ In both the r and theta direction

in an attempt to attain the global optimum.
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IV. Results

Introduction

This chapter is divided into three sections: the first

section contains a discussion of general observations made

throughout the thesis effort. The second section contains

the actual numerical results for each mirror configuration

studied. Each mirror configuration is discussed, the single

and multiple wavelength equivalent diameters are analyzed

and compared, and, if there was an optimization run

performed using that mirror configuration, the symmetrical

and the Operations Research determined optima are compared.

The final section contains the results of the qualitative

comparison of the resolving capability of the Golay six

* mirror configuration.

The term "ring", used throughout this chapter, is used

to describe each single MTF contour that forms when the

cones in the three-dimensional representation of the MTF are

mapped onto a contour representation of the overall MTF

(Figure 7). These rings often blend together, especially

when the mirrors are close tog .ther or a broadband contour

plot is analyzed (Figures 24 and 26).

General Observations

Observing the changes in the MTF of a particular system

when going from a short wavelength (three microns) to the

long wavelength (five microns), one notes that as the

wavelength increases, the outer rings contract radially
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towards the central ring; the rings also decrease in

diameter (as described In chapter three).

As the spacing of each particular mirror configuration

was expanded to ohtain the optimum MTF for that

configuration, the point at which the MTF opened up to allow

an interior zero was always at the edge of the central ring

and between two rings of the next outer series that formed a

symmetrical arrangement about the central ring (Figure 17).

This result was significant; because the interior zero

always occurred at this point, some mirror configurations

would not improve when including the MTF from longer

wavelengths.

Odd Mirror Symmetrical Systems. For both the three-

mirror and five-mirror symmetrical systems (triangle and

pentagon), there was no improvement in the MTF from the

single, three-micron to the broadband three to five micron

wavelengths. On studying the plots of these systems (Figure

17 and 28), one observes that the outer rings form a

symmetrical pattern equidistant from the central ring. The

place at which the single wavelength MTF incurs its interior

zero is as described in the previous section (Figure 17).

As the wavelength increases, the rings radially contract

toward the center (as expected), but, because of this

equidistant arrangement, there is no benefit derived from

the use of the multiple wavelength MTF because the rings are

contracting at the same rate as they move inward. The MTF

information from the longer wavelengths is not able to fill
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in the gap at the center ring where the MTF originally opens

up. Another way of looking at this phenomenon is -- if one

can draw a line from the origin and not intersect any ring

in the MTF pattern at a single wavelength, there can be no

improvement in the MTF using a multiple wavelength MTF

scheme (Figure 17 and 28).

Golay Configurations. The Golay patterns and their

resulting MTF patterns were studied in Golay's paper

(10:272,273). The patterns were attractive at first because

the idea was to have no redundancy in the autocorrelations

(no overlap of the rings). However, the Golay patterns used

strictly the non-redundancy criterion in determining the

mirror configurations; although more spatial frequencies

can be detected, the first zero in many of the systems

occurred close to the center, as seen in the

four-mirror Golay pattern (Figure 15). The only mirror

configuration that was of benefit to this thesis was the

Golay-six pattern. This configuration is a nonredundant

system; its MTF is highly symmetrical, thus allowing for a

high minimum MTF value when evaluated using the thesis

criterion.

Operations Research Optimizations. The optimization

routine yielded surprising results. The original assumption

was that the optimum patterns would yield symmetrical mirror

configurations, so much of the thesis effort was devoted to
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Figure 15. Four-mirror Golay

optimizing the symmetrical configurations. The results from

the OR routine gave non-symmetrical mirror configurations

and significantly higher MTF values than their symmetrl.cal

counterparts. As stated previously, these results may not

be global optima, but in general are much better results

than were obtained using trial and error vith the

symmetrical systems.

Detailed Results

This section contains the results obtained from all of

the mirror configurations studied. Each section will

describe ' --*' ,,lar confip:nAtion, give the single-

mirror equivalent diameter (E.D.) optimum value, the three-

to-five micron single-mirror equivalent diameter optimum

value, the percent resolution increase (if any) obtained

going from single to multiple wavelength, and finally,
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compare the results from the OR optimization of the

particular system with its symmetrical counterpart. The

mirror configurations are not necessarily to scale;

Appendix D contains the actual xy coordinates of all the

systems studied.

Three-Mirror Equilateral Triangle. As discussed in the

previous section, the three-mirror equilateral triangle did

not benefit from the multiple wavelength scheme because its

outer rings were equidistant from the central ring. The OR

optimization obtained the identical equilateral triangle

optimum configuration, initially enhancing the original idea

that symmetrical configurations would yield the optimum

configurations. The 3-5 micron contour plot (Figure 18)

clearly shows the area that cannot be filled in by using the

multiple wavelength MTF information.

All of the comparison tables are arranged as follows:

reading across, the percent improvement is between the two

configurations being contrasted; reading down, the percent

improvement is in the same mirror configuration between the

three and three-to-five micron results.

Table 1. Three-Mirror Results

Symmetrical OR % Improvement
Configuration Configuration OR vs Symmetrical

3 Micron
E.D. (meters) 2.007 2.007 0

3-5 Micron
E.D. (meters) 2.007 2.007 0

% Improvement 0 0
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Figure 16. 3-Mirror triangle

Figure 17. 3-mirror, Figure 18. 3-mirror, 3-5

3-micron MTF micron MTF
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Four-Mirror Cross. For ease of inputting the mirror

coordinates, the four-mirror cross was rotatel 45 degrees

and evaluated as a four-mirror box (Figure 19). The four-

mirror configuration yielded a more promising MTF; as seen

in Figure 20, the outer MTF rings are not equidistant from

the central ring. Because of this arrangement, when going

from the 3 micron MTF to the 3-5 micron MTF, the corner MTF

rings radially collapse to fill in the points at which the

single-wavelength MTF opens up (at the edge of the central

MTF ring). This results in an increased equivalent diameter

for the three-to-five micron MTF.

As discussed earlier, the OR optimization yielded two

significant results. The first was that the optimum

configuration the OR rout~ne obtained was better than the

symmetrical configuration; the second was that the optimum

configuration was not symmetrical.

Table 2. Four-Mirror Results

Symmetrical OR % Improvement
Configuration Configuration OR vs Symmetrical

3 Micron
E.D. (meters) 2.235 2.644 18.4%

3-5 Micron
E.D. (meters) 2.418 2.706 11.9%

% Improvement 8.3% 2.3%
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Figure 19. 4-mirror box Figure 20. 4-mirror box, 3

micron 3-D plot

0

Figure 21. 4-mirror box, 3 Figure 22. 4-mirror box,

micron contour plot 3-5 micron contour plot
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Figure 23. 4-mirror OR Figure 24. 4 mirror OR

optimum, 3-micron optimum, 3 micron contour

plot

00

Figure 25. 4-mirror OR Figure 26. 4-mirror OR

optimum , 3-5 micron optimum, 3-5 micron contour

plot
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Four-Mirror Cross w'ith Center Mirror. This five-mirror

pattern was studied to see if adding a center mirror to the

four-mirror cross configuration would improve the four-

mirror system's equivalent diameter. There was improvement

in the 3-micron MTF value when compared to the four-mirror

cross, but only marginal improvement in the three-to five

micron MTF as compared to the 4-mirror cross, as shown in

Table 3.

There is no benefit in using the five-mirror cross

configuration; the 5-mirror pentagon has better results.

There was no OR optimization performed on this

configuration; the five-mirror system was optimized using a

pentagon as a start point.

Table 3. Comparison of 4 vs 5 mirror cross

Four-mirror Five-mirror % Improvement
Cross Cross 4 vs 5 Mirror

3 Micron
E.D. (meters) 2.235 2.414 8.0%

3-5 Micron
E.D. (meters) 2.418 2.431 0.5%

% Improvement 8.3% 0.7%

Five-Mirror Pentagon. This symmetrical configuration

suffers the same problems as the three-mirror equilateral

triangle. The middle and outer MTF "rings" are equidistant

from the origin; therefore there can be no benefit from

using MTF information from the longer wavelengths.
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The OR optimization at the single, 3-micron, wavelength

did not yield any improvement over the symmetrical values;

however, the 3-5 micron run did offer a slightly better

value. In plotting the coordinates, it appears that the

routine simply improved the placement of the symmetrical

pentagon optimum mirror configuration. The results are

summarized in Table 4.

The six-mirror pentagon was briefly studied; there was

no improvement in the minimum MTF.

Table 4. 5-mirror results

Symmetrical OR % Improvement
Configuration Configuration OR vs Symmetrical

3 Micron
E.D. (meters) 3.24 3.24 0.0%

3-5 Micron
E.D. (meters) 3.24 2.28 1.23%

% Improvement 0.0% 1.23%
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Figure 27. 5-mirror Figure 28. 5-mirror

pentagon pentagon, 3 micron contour

plot

Figure 29. 5-mirror Figure 30. 5-mirror OR

pentagon, 3-5 micron optimum, 3-5 micron contour

contour plot plot
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Six-Mirror Configurations. The six-mirror systems

proved to be the most complex series of mirror systems to

study simply due to the number of mirrors and their

resulting many possibilities of arranging the mirror

configurations. As with the other mirror numbers, the first

goal was to optimize this mirror system using a symmetrical,

hexagonal, arrangement. Since the outer rings of this

configuration were not equidistant from the origin (Figure

33), the hexagonal configuration could be improved upon by

using the multiple wavelength MTF.

Another six-mirror of interest was the six-mirror Golay

pattern (Figure 35). As described previously, this unique

mirror arrangement results in no ring overlap (Figure 37);

since the MTF pattern is highly symmetrical, the minimum MTF

value should be fairly high. The Golay configuration did

result in a significantly higher minimum MTF for both the

single, three micron configuration as well as the three-to-

five micron configuration when conpared to the symmetrical

hexagon val'.ies.

The OR optimization of the six-mirror hexagon system

resulted in values between the hexagon configuration and the

Golay configuration. The Golay pattern was also entered in

the optimization routine; this yielded slightly better

results than the manual optimization, but the increase in,

minimum MTF is attributed to the more precise arrangement of

tiie mirrors into the Golay pattern rather than an

improvement over the Golay pattern. The values used in the
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Golay comparison are the OR optimized results.

The three-dimensional and contour plots of the six-

mirror systems are with a maximum spatial frequency of

6 -1
2 x 10 m

Table 5. Comparison of hexagon and OR optima

Symmetrical OR % Improvement
Configuration Configuration OR vs Symmetrical

3 Micron
E.D. (meters) 3.579 3.945 10.23%

3-5 Micron
E.D. (meters) 3.732 4.114 10.24%

% Improvement 4.27% 4.28%

Table 6. Comparison of hexagon and Golay optima

Symmetrical Golay % Improvement Golay
3 Configuration Configuration vs Symmetrical
3 Micron

E.D. (meters) 3.579 4.344 21.37%

3-5 Micron
E.D. (meters) 3.732 4.694 25.77%

% Improvement 4.27% 8.06%

Table I. Comparison of OR and Golay optima

OR Golay % Improvement
Configuration Configuration Golay vs OR

3 Micron
E.D. (meters) 3.945 4.344 10.11%

3-5 Micron
E.D. (meters) 4.114 4.694 14.10%

% Improvement 4.28% 8.06%
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Figure 31. 6-mirror Figure 32. 6-mirror

hexagon hexagon, 3 micron 3-D plot

*0

(0)

Figure 33. 6-mirror Figure 34. 6-mirror

hexagon, 3 micron contour hexagon, 3-5 micron contour

plot plot
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Figure 35. 6-mirror Golay Figure 36. 6-mirror Golay,

3 micron 3-D plot

.o..

Figuie 37. 6-mirror Golay, Figure 38. 6-mirror Golay,

3 micron contour plot 3-5 micron contour plot
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Figure 39. 6- mirror OR Figure 40. 6-mirror OR

optimum, 3 micron optimum, 3 micron contour

plot
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Figure 41. 6-mirror OR Figure 42. 6-mirror OR

optimum, 3-5 micron optimum, 3-5 micron contour

plot

* 65



Qualitative Comparison of Golay 6 Resolution

This analysis of the Golay six mirror configuration was

made using the OR optimized Golay mirror configuration. The

analysis was performed in three runs: the first run used

the single, three micron optimum configuration, the second

run used the single wavelength mirror coordinates but used

the three-to-five micron wavelength spread, and the third

run used the three-to-five micron OR optimum configuration.

All the runs used a simulated one-meter disk at 500,000

meters as the target. The Fortran code used in this series

of runs is included in Appendix E.

The results showed an increase in resolution from the

single, three micron configuration compared to the three-to-

five micron configuration. Figure 43 graphs a crosscut of

two images; the low peak line is the single wavelength

cylinder cross-section, the high peak is the multiple

wavelength cylinder cross-section. The single and multiple

wavelength MTF plots are compared in Figure 44.

The results from this series of runs is a good first

indication that the resolution does increase when using the

multiple wavelength technique; however, the results are

strictly qualitative.
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Golay 6 Cylinder
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Figure 43. Comparison of tvo Qolay 6 cylinder cross-

sections
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(a) Three micron

(b) Three to five micron

Figure 44. Comparison Of Qolay 6 3 and 3-5 micron KTF

* 68



V. Conclusions

Summary

The goal of this thesis was to study the possibility of

increasing the theoretical spatial resolution of various

multiple mirror systems by using spatial information

gathered over a broad wavelength spectrum. This task was

accomplished in several stages. First, the criterion for

determining a system's maximum spatial resolution was

established by using Harvey's criterion of the maximizing

the spatial frequency at which the system observed its first

zero in the MTF, referred to as "minimum MTF" throughout the

thesis. The second stage was ic choose several multiple

mirror configurations for study. The thesis studied three

through six mirror systems, choosing a symmetrical

configuration within each particular number of mirrors in

the belief. that symmetry would yield the best results. Each

chosen system was manually optimized at three microns by

slowly increasing the distance between mirrors until an

interior zero opened up in the system. At that point, the

three-to-five micron spectrum was optimized, again by slowly

increasing the distance between mirrors until an interior

zero opened ul, in the interior of the MTF. Afterwards, each

mirror system was optimized using an Operations Research

optimization routine and compared to the symmetrical mirror

systems with the same nuimber of mirrors. Finally, an

initial attempt was miide in determining the significance of
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the increased minimum MTF between single wavelength and

multiple wavelength results of a particular mirror system.

General Conclusions

The main goal was to use spectral information from a

wavelength spectrum to increase a system's resolving

capability over the system's capability at a single

wavelength. A significant increase was realized in all

symmetrical, even-numbered mirror configurations. The odd

number mirror configurations did not show an increase in

resolution because their resulting MTF patterns were aligned

equidistant from the center ring and, as the wavelength

increased, the system collapsed radially inward. At the

same time, the MTF rings became smaller, not allowing the

gathered information to fill in the interior zeros that

* developed when the mirrors were moved apart.

The Operations Research optimization routine was quite

successful in discovering nonsymmetrical configurations that

increased the system's resolving capability over its

symmetrical counterpart.

The significance in the increased spatial resolution is

strictly qualitative. The initial results show that there

is an Increase in the resolving capability of a system using

the multiple wavelength technique, as originally

hypothesized.
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Recommendations

This thesis lays the foundation for using a wavelength

spectrum in conjunction with multiple mirrors to Increase a

system's overall resolution. Theoretically, this thesis

demonstrated the validity of this assumption. There are

several practical aspects that still need consideration.

The first aspect is the criterion used for evaluating

the mirror systems. Harvey's criterion was a good starting

point, but there could be a better criterion developed that

more appropriately represents the higher spatial frequency

information gathered.

A second aspect is the practical determination of the

increase in spatial resolution between the single and

multiple wavelength results of a particular iystem. The

* initial results indicated an increase in resolution.

Further studies could concentrate on a more quantitative

approach to validating this result.

A third area of future research is refining the

Operations Research optimization routine to improve its

probability of finding global optima for the various mirror

configurations studied.
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APPENDIX A: MAIN PROGRAM USED IN GENERATING MTF

C This main program generates an MTF array and evaluates
C the matrix to determine the minimum MTF in the
C array. Data is read from file "init.val" and
C the results are entered in file "answer".
C

REAL X(10),Y(10),LAMDA1,R,XI,ETA,STEP,LSTEP,P
REAL RVAL,MTFMIN,XIP,ETAP,RUNNUM,MAXVAL
REAL MTF(-150:150,-150:150),PI,DELX,DELY,LAMDA2
INTEGER I,J,K,L,M,N,A,B
OPEN (1l,FILE='init.val',STATUS='OLD')
OPEN (12,FILE='answer',STATUS='OLD')
PI=3.141592654

C
C This portion rpads in data from file "init.val" created
C by the program "values"
C
C INPUTS:
C
C N = (integer) Number of mirrors.
C X(I), Y(I) = (meters) Cartesian coordinates of the
C mirrors
C LAMDA1 = (microns) Shortest wavelength.
C LAMDA2 = (microns) Longest wavelength.
C LSTEP = In multiple wavelength runs, the step
C increase in wavelength.
C RUNNUM = Run number.
C MAXVAL = (microns) Maximum desired spatial value.
C

READ(11,*) N
DO 10 I = 1,N

READ(11,*) X(I),Y(M)
10 CONTINUE

READ(11,*) LAMDA1,LAMDA2
READ(11,*) LSTEP
READ (11,*) RUNNUM
READ (11,*) MAXVAL
STEP = MAXVAL / 150.0
DO 60 P = LAMDA1,LAMDA2,LSTEP

DO 50 J - 1,N
DO 40 K = 1,N

DELX = X(J)-X(K)
DELY = Y(J)-Y(K)
XI = -MAXVAL
ETA = -MAXVAL
DO 30 L = -150,150

DO 20 M = -150,150
R = SQRT(((P * XI) - DELX) **2

* + ((P * ETA) - DELY) **2)
IF (R.GT.1) THEN

MTF(M,L)=MTF(M,L)
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ELSE
MTF(M,L) 2 / PI * (ACOS(R)
-SQRT(R * (1-R **2))) + MTF(M,L)

END IF
XI = XI + STEP

20 CONTINUE
ETA = ETA + OTEP
XI = -MAXVAL

30 CONTINUE
40 CONTINUE
50 CONTINUE
60 CONTINUE
WRITE (12,*) 'MTF AT 0,0 IS ',MTF(0,0)

C
C This portion calculates the minimum zero value of a
C given MTF profile
C

MTFMIN = 5.0
DO 100 B = -150,150

DO 90 A = -150,150
IF (MTF(A,B).GT.0) THEN

GO 20 90
ELSE
XI = STEP * A
ETA = STEP * B
RVAL = SQRT(XI**2 + ETA**2)
IF (RVAL.LT.MTFMIN) THEN

MTFMIN = RVAL
XIP = XI
ETAP = ETA
END IF

END IF
90 CONTINUE

100 CONTTNUE
C
C This portion writes the result into file "answer"
C
C

WRITE (12,*) 'MIN MTF IS',MTFMIN
WRITE (12,*) XIP
WRITE (12,*) ETAP
WRITE (12,*) 'THIS IS RUN NUMBER',RUNNUM
CLOSE (11)
CLOSE (1Z)
END
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APPENDIX B: CODE TO WRITE INPUT FOR MAIN PROGRAM

C
C
C This program writes initial values for MTF calculations
C into file "init.val" for use in main program
C
C INPUTS:
C
C N = (integer) Number of mirrors in the pupil
C X(I),Y(I) = (real,meters) coordinate of mirror in
C Cartesian Coordinate system
C LAMDA1, LAMDA2 = (real,microns) wavelength range of MTF
C LSTEP = (real,microns) step interval in multiple
C wavelength MTF calculation
C MAXVAL = (real,microns) maximum array value
C
C
C

REAL X(10),Y(10),LAMDA1,LAMDA2,LSTEP,RUNNUM,MAXVAL
INTEGER I,N
OPEN(10,FILE='init.val',STATUS='OLD')
PRINT *,'ENTER NUMBER OF APERTURES'
READ *,N
WRITE (10,*) N
DO 10 I = 1,N

PRINT *,'EF'TER COORDINATES OF APERTURE ',I
READ *,X(I), Y(I)
WRITE (10,*) X(I), Y(I)

10 CONTINUE
PRINT *,'ENTER WAVELENGTH MIN AND MAX VALUES (IN
*MICRONS)'
READ *,LAMDA1,LAMDA2
WRITE (10,*) LAMDA1,LAMDA2
PRINT *,'ENTER WAVELENGTH STEP SIZE (IN MICRONS)'
READ *,LSTEP
WRITE (10,*) LSTEP
PRINT *,'ENTER RUN NUMBER'
READ *,RUNNUM
WRITE (10,*) RUNNUM
PRINT *,'ENTER MAX SPATIAL VALUE (FOR ZOOM RUN)'
READ *, MAXVAL
WRITE (10,*) MAI7AL
CLOSE (10)
END
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APPENDIX C: OPTIMIZATION CODE

REAL X(10) ,Y(10) ,LAMDA1,LAMDA2,STEP,LSTEP
REAL TSTEP,TDONE,RSTEP,R(10),RH(10),THETAH(10)
REAL ANSPR,ANSNR,ANSPT,ANSNT,ANS,RDONE,THETA(10)
REAL RUNNUM1 MAXVAL,PI
INTEGER I,N,COUNT

DATA PI/3.141592654/

OPEN (11,FILE='input.or',STATUS'IOLD')
OPEN (12,FILE='optim',STATUS='OLD')
READ(11,*) N

DO 10 I = 1,N
READ(11,*) R(I ),THETA(I)

10 CONTINUE

READ (11, *) LAMDA1, LAMDA2
READ(11,*) LSTEP
READ (11,*) RUNNUM
READ (11,*) MAXVAL
READ (11,*) RDONE
READ (11,*) TDONE
STEP =MAXVAL / 150.0
TSTEP .1
RS"EP =.1

CALL PLR2XY(N,THETA,R,X,Y)
WRITE (12,*) "THIS IS RUN NUMBER',RUNNUM
WRITE (12,*) 'INITIAL X AND Y VALUES ARE'
DO 3 I = 1,N

WRITE (12,*) X(I),Y(I)
3 CONTINUE

ANS = RMTRMN(N,X,Y,LAMDA1,LAMDA2,LSTEP,MAXVAL,STEP)
WRITE (12,*) 'INITIAL MTF IS',ANS

100 IF((TSTEP.LE.TDONE).AND.(RSTEP.LE.RDONE)) GO TO 200

DO 15 1 2,N
20 RH(I) =R(I)

THETAH(I) = THETA(I)
C
C Radius steps outward
C

R(I) = RH(I) + RSTEP
CALL PLR2XY(N,THETA,R,X,Y)
ANSPR=RMTFMN(N,X,Y,LAMDA1,LAMDA2,LSTEP,MAXVAL,STEP)

C
C The next step determines If the resulting minimum
C MTFis better than the previous best MTF
C
C

IF (ANSPR.GE.ANS) THEN
ANS = ANSPR
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ELSE

C If outward does not improve minval, radius steps in
C

R(I) = RH(I)-RSTEP
CALL PLR2XY(N,THETA,R,X,Y)
ANSNR = RMTFMN(N,X,Y,LAMDA1,LAMDA2,

* LSTEP,MAXVAL,STEP)
C
C Check for increase in Minval
C

IF (ANSNR.GT.ANS) THEN
ANS = ANSNR
ELSE
R(I) RH(I)

END IF
END IF

C
C With the radial direction checked, the theta
C direction is checked in both negative and
C positive direction.
C Theta(2) is always zero, thus the following IF
C statement.
C

IF (I.EQ.2) GO TO 15
THETA(I) = THETAH(I)-TSTEP
CALL PLR2XY(N,THETA,R,X,Y)
ANSNT = RMTFMN(N,X,Y,LAMDA1,LAMDA2,

* LSTEP,MAXVAL,STEP)
IF (ANSNT.GE.ANS) THEN

ANS = ANSNT
ELSE
THETA(I) = THETAH(I)+TSTEP
CALL PLR2XY(N,THETA,R,X,Y)
ANSPT = RMTFMN(N,X,Y,LAMDA1,LAMDA2,

LSTEP,MAXVAL,STEP)
IF (ANSPT.GT.ANS) THEN

ANS = ANSPT
ELSE
THETA(I) = THETAH(I)

END IF
END IF

C
C Did the mirror move? If no, on to the next mirror.
C Else we try to move the same mirror again.
C
C

15 CONTINUE
C
C The next portion check to see if ANY of the mirrors moved
C in the latest iteration. If none moved, the step size is
C halved. If yes, go through the entire iteration again
C with the same step.
C

COUNT = 0
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DO 40 I = 2,N
IF ((R(I).EQ.RH(I)).AND.(THETA(I).EQ.THETAH(If)I THEN

COUNT = COUNT + 1
END IF

40 CONTINUE
IF (COUNT.EQ.(N-1)) THEN

TSTEP = TSTEP /2
RSTEP =RSTEP /2
GO TO 100

ELSE
GO TO 100

END IF

200 WRITE (12,*) 'MINVAL IS', ANS
WRITE (12,*) 'AT MIRROR LUCATION'
CALL PLR2XY(N,THETA,R,X,Y)
DO 50 I 1,N

WRITE (12,*) X(I),Y(I)
50 CONTINUE

WRITE (12,*) 'THIS IS RUN NUMBER',RUNNUM
CLOSE (11)
CLOSE (12)
END

SUBROUTINE PLR2XY(N,THETA,R,X,Y)
C
C This subroutine converts from a polar description of the
C mirror configuration to an (X,Y) description.
C
C I4NPUTS:
C N = (integer) Number of mirrors (must be >=3).
C THETA(I = (real,radians) Angle from mirror(i-1) to
C mirror(i).
C THETA(1) is never used.
C THETA(2) is always 0.0.
C R(I) = (real,meters) Distance from mlrror(i-1) to
C mirror(i).
C R(1) is never used.
C OUTPUTS:
C X(i) = (real,meters) X coordinate of mirror(i).
C Y(i) = (real,meters) Y coordinate of mirror(i).
C
C LOGIC:
C Compute each mirror in turn, using trigonometry.
C X(i)=X(i-1) + R(i)*COS(THETA(i))
C Y(i)=Y(i-1) + R(I)*SIN(THETA(i))
C

DIMENSION THETA(10) ,R(10) ,X(10),Y(10)

X(1) =0.0
Y(1) =0.0

X(2) =R(2)
Y(2) = 0.0
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DO 10 I = 3,N
IOLD = I-i
X(I) = X(IOLD)+R(I)*COS(THETA(I))
Y(I) = Y(IOLD)+R(I)*SIN(THETA(I))

10 CONTINUE

RETURN
END

Real Function RMTFMN(N,X,Y,LAMDA1,LAMDA2,
* .JSTEP,MAXVAL,STEP)
INTEGER I,J,K,L,M,N,A,B
Real LAMDAI,LAMDA2,PI
REAL R,XI,ETA,STEP,LSTEP,P
REAL RVAL,RMTFMN, XIP,ETAP,MAXVAL
REAL MTF(-150:150,-150:150),PI,DELX,DELY,LAMDA2

Dimension X(10),Y(10)

DATA PI/3.141592654/

DO 10 I = -150,150
DO 10 J = -150,150

MTF(I,J) = 0.0
10 CONTINUE

DO 60 P = LAMDA1,LAMDA2,LSTEP
DO 50 J = 1,N

DO 40 K = 1,N
DELX = X(J)-X(K)
DELY = Y(J)-Y(K)
XI = -MAXVAL
ETA = -MAXVAL
DO 30 L = -150,150

DO 20 M = -150,150
R = SQRT(((P * XI) - DELX)**2

+ ((P*ETA) - DELY)**2)
IF(R.GT.1) THEN
MTF(M,L) = MTF(M,L)
ELSE

C
C Normally the following equation is used to compute
C the value of the MTF at the given R value. To save
C computer time, if there is a value to be placed in the
C MTF position, we place a 1.
C
C MTF(M,L) = 2 / PI * (ACOS(R)
C * - SQRT(R * (1 - R**2)))
C * + MTF(M,L)
C

MTF(M,L) = 1 + MTF(A,L)
END IF
XI = XI + STEP

20 CONTINUE
ETA = ETA + STEP
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XI = -MAXVAL
30 CONTINUE
40 CONTINUE
50 CONTINUE
60 CONTINUE

C
C This portion calculates the minimum zero values of a
C given MTF profile
C

RMTFMN = 5.0
DO 100 B = -150,150
DO 90 A = -150,150

IF (MTF(A,B).GT.0) THEN
GO TO 90
ELSE
XI = STEP * A
ETA = STEP * B
RVAL = SQRT(XI**2 + ETA**2)
IF (RVAL.LT.RMTFMN) THEN

RMTFMN = RVAL
XIP = XI
ETAP = ETA

END IF
END IF

90 CONTINUE
100 CONTINUE

RETURN
END
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* APPENDIX D: COORDINATES OF MIRROR SYSTEMS

This appendix details the Cartesian coordinates of the

optimum mirror configurations as described in Chapter 4.

Since the only concern was relative mirror position, the

various input coordinates were varied for ease of input,

rather than being concerned with standard input parameters,

for example, symmetry about the origin. The coordinates

presented in this appendix are the center points of one-

meter diameter mirrors with all the coordinates having units

of meters.

Three-Mirror Configuration

The three-mirror configuration yielded only one

configuration -- the equilateral triangle. As stated in

Chapter 4, there was no improvement in the MTF between the

three-micro1 and three-to-five micron runs.

Table 8.

3-Mirror equilateral

triangle

x y

1.0 0.0
-0.5 0.866
-0.5 -0.866
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Four-Mirror Configurations

Table 9. Table 10.

Symmetrical optimum OR optimum
4-mirror cross, 4-mirror,

3 micron 3 micron

x y x y
0.7 0.7 0.0 0.0
0.7 -0.7 2.263 0.0

-0.7 0.7 1.871 1.680
-0.7 -0.7 0.508 1.724

Table 11. Table 12.

Symmetrical optimum OR optimum
4-mirror cross, 4-mirror,
3-5 micron 3-5 micron

x y x y
0.91 0.91 0.0 0.0
0.91 -0.91 2.344 0.0

-0.91 0.91 1.884 1.718
-0.91 -0.91 0.324 1.887

Five-Mirror Configurations

Table 13. Table 14.

Symmetrical 4-mirror Symmetrical 4-mirror
cross with center mirror, cross with center mirror,

3 micron 3-5 micron

x Y x y

0.0 0.0 0.0 0.0
0.9 0.9 0.925 0.925
0.9 -0.9 -0.925 0.925

-0.9 0.9 0.925 -0.925
-0.9 -0.9 -0.925 -0.925

As discussed in Chapter 4, the pentagon's MTF did not

improve between the three micron and the three-to-five

micron runs in the symmetrical configuration.
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Table 15.

5 mirror pentagon

x y

1.62 0.0
0.501 1.541

-1.311 0.952
-1.311 -0.952
0.501 -1.541

The OR optimization did give a slightly better minimum

MTF value; the coordinates of this configuration follow.

Table 16.

5-mirror OR optimum,

3-5 micron

x y

0.0 0.0
1.813 0.0
2.343 1.733
0.915 2.850

-0.541 1.770

Six-Mirror Configurations

Table 17. Table 18. Table 19.

6-mirror hexagon, 6-mirror OR 6-mirror Golay,

3 micron optimum, 3 micron 3 micron

x y x y x Y

1.70 0.0 0.0 0.0 2.60 0.0
0.85 1.472 1.713 0.0 -1.30 2.252

-0.85 1.472 2.653 1.622 -1.30 -2.252
-1.70 0.0 2.160 3.092 1.434 1.247
-0.85 -1.472 0.396 3.455 -1.800 0.619
0.85 -1.472 -0.982 2.414 0.363 -1.865
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Table 20. Table 21. Table 22.

6-mirror hexagon, 6-mirror OR optimum, 6-mirror Golay,
3-5 micron 3-5 micron 3-5 micron

x xy x y

1.970 0.0 0.0 0.0 3.0 0.0
0.985 1.706 1.928 0.0 -1.5 2.599
0.985 1.706 2.900 1.682 -1.5 -2.599
1.97 0.0 2.604 3.370 1.811 1.575
0.985 -1.706 0.795 3.783 -2.270 0.781
0.985 -1.706 -0.953 2.891 0.458 -2.356

Table 23. Table 24.

OR optimized Golay 6, OR optimized Golay 6,
3 micron 3-5 micron

x y x y

0.0 0.0 0.0 0.0
1.753 0.0 1.782 0.0
4.255 1.547 3.880 1.956
3.355 3.037 3.279 3.562
0.772 4.451 0.478 4.513

-0.111 2.974 -0.767 3.167
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APPENDIX E

C
C This program generates a 3-dimensional resultant image
C (file name "data"), and a 1-dimensional slice of that
C image for examination (file name "line"). This
C program requires access to the IMSL library (version
C 9.2) to generate the sombrero function and perform the
C inverse Fourier Transform.
C

DOUBLE PRECISION X( 10) ,Y( 10) ,LAMDA1,R,XI ,ETA
DOUBLE PRECISION RLNNU,MAXVAL,STEP,LSTEP,P,DIST
DOUBLE PRECISION MTF(-40:40,-40:40) ,PI,DELX,DELY
DOUBLE PRECISION PVAL,CIRCLF(-40:40,-40:40)
DOUBLE PRECISION MMBSJ1,ARG,RWK(536),Z,LAIDA2
INTEGER IA1, 1A2,N1,N2,N3, IJOB, IWK (536)
INTEGER I,J,K,L,M,N,IER
DOUBLE COMPLEX A (80,80) ,CWK (81) ,F( 80,80)
COMPLEX D(80,80)
OPEN (10,FILE='data',STATUS'1NEW')
OPEN (1l,FILE='init.val',STATUS'IOLD')
OPEN (l2,FILE='line,STATUSNEW')
DATA PI/3.141592654/
READ(1l,*) N
DO 10 1 = 1,N

READ( 11,*) X( I), Y(I)
10 CONTINUE

* C
C Inputs:
C All inputs are as in previous programs, except
C
C Dist = (real,meters) d'stance of 1-meter circle from
C mirror configuration
C

READC1,*) LAMDA1,LAMDA2
READ(1l,*) LSTEP
READ (11,*) RUNNUM
READ (11,*) MAXVAL
READ (11,'*) DIST
DIST = !/DIST
STEP = MAXVAL / 40.0

C
C Gene rate the appitopriate MTie
C

DO 60 P = LAMDA1,LAMDA2,LSTEP
DO 50 J = 1,N

DO 40 K = 1,N
DELX = X(J) - X(K)
DELY = Y(J) - Y(K)
XI =-MAXVAL

ETA =-MAXVAL

DO 3fl L - 40,40f

DO 20 M = -40,40
R SQRT(((P *XI) -DELX)**2
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* + ((P * ETA) - DELY)**2)

IF (R.GT.1) THEN
MTF(M,L) = MTF(M,L)
ELSE
MTF(M,L) = 2 / PI * (ACOS(R)

• I -SQRT(R*(I-R**2)))+MTF(M,L)
END IF

XI = XI + STEP
20 CONTINUE

ETA = ETA + STEP
XI = -MAXVAL

30 CONTINUE
40 CONTINUE
50 CONTINUE
60 CONTINUE

MAXVAL = MAXVAL * 1E6
STEP = MAXVAL / 40
XI = -MAXVAL
ETA = -MAXVAL

C
C Generate appropriate sombrero function
C

DO 31 L = -40,40
DO 21 M = -40,40

R = SQRT((P * XI)**2 + (P * ETA)**2)
IF (R.EQ.0) THEN

CIRCLE (M,L) = CIRCLE(M-1,L-I)
GO TO 21

END IF
ARG = PI*R * DIST

Z = MMBSJ1(ARG,IER)
CIRCLE(W,L) = ((2*Z)/(PI*R*DIST))*(PI/4)

XI = XI + STEP
21 CONTINUE

ETA = ETA + STEP
XI = -MAXVAL

31 CONTINUE
C
C Find the maximum MTF value for normalization
C

DO 110 J = -40,40
DO 110 I = -40,40

IF (MTF(I,J).GT.PVAL) PVAL = MTF(I,J)
110 CONTINUE

C
C Normalizing matrix
C

DO 200 J = -40,40
DO 200 I = -40,40

MTF(I,J) = MTF(I,J) / PVAL
200 CONTINUE

C Multiplying matrices together
C

DO 300 J = -40,39
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L =J + 41
Do 300 I = -40,39

K = I + 41
A(K,L) = CMPLX(MTF(I,J) * CIRCLE(I,J))

300 CONTINUE
C
C inverse Fourier Transform matrix A
C

IA1 = 80
IA2 = 80
N1i 80
N2 =80
N3 =1
IJOB = -1
CALL FFT3D(A, IA1, 1A2,N1,N2,N3, IJOB, IWK,RWK,CWK)

C
C Transpose matrix quadrants to get reasonable picture
C

DO 600 J = 1,40
DO 600 I1 1,40

F(I,J) =A(I+40,J+40)

600 CONTINUE
DO 610 J = 41,80

DO 610 I1 1,40
F(I,J) =A(I+40,J-40)

610 CONTINUE
DO 620 J = 1,40

DO 620 I1 41,80
F(I,J) =A(I-40,J+40)

620 CONTINUE
Do 630 J = 41,80

DO 630 1 41,80
F(I,J) =A(I-40,J-40)

630 CONTINUE
C
C Write matrix into file
C

DO 400 J =1,80
DO 400 I1 1,80

D(I,J) =CMPLX(F(I,J))

WRITE (10,*) CABS(D('I,J))
400 CONTINUE

C
C Take a slice of the cylinder to examine slope
C

DO 410 I = 1,80
WRITE (12,*) I,CABS(D(39,1))

410 CONTINUE
CLOSE (10)
CLOSE (11)
CLOSE (12)
END
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